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Introduction 

This section outlines the most common methods for segmentation and 

targeting.  It assumes that you have already obtained the data for segmentation 

(data on basis variables) and, optionally, the data for targeting. These data should 

be first assembled into usable matrices.  A separate technical note describes 

methods for behavior-based segmentation using choice models. 

Broadly stated, there are two approaches to segmentation (Wedel and 

Kamakura 2000), namely, a priori methods and post-hoc methods.  In a priori 

methods, an analyst uses domain knowledge to segment customers into different 

groups (e.g., male and female customers). We will not be focusing on these types 

of approaches here. In post-hoc methods, the analyst relies on data analysis to 

identify "groupings" of customers. There are two broad categories of post-hoc 

methods: (1) Traditional methods, which are based on using a distance or a 

similarity metric to determine how far or near a customer is from other 

customers in the market, and (2) Newer probability-based, such as latent cluster 

anaysis, which can help identify groupings in the population from which a sample 

of respondents has been selected for the segmentation analysis.  If the latent class 

method results in a well-partitioned segmentation scheme, then it means that 

each customer in the market belongs to just one segment with high probability.  

There are also two broad categories of methods available for targeting analysis, 

which can be used after we determine the number of segments in the market: (1) 

Scoring methods, such as discriminant analysis, which can be used to compute a 

unique score for each customer or prospect.  Based on their discriminant scores, 

customers can be assigned to one (or, sometimes, more than one) of the 

identified segments.  (2) Tree based methods, such as CART (Classification and 

Regression Trees) and CHAID (Chi-Squared Automatic Interaction Detector).  

Traditional Cluster Analysis 

Traditional cluster analysis refers to a range of techniques that are available 

to identify structure (groupings) within complex and multidimensional data, as 

are typically available in segmentation studies.  To understand the potential 

challenges associated with multidimensional data, consider first the simple 

example of “clustering” a deck of cards, which consists of only 52 items to be 

clustered. Each card varies from the other cards along three dimensions (variables): 

suit, color, and number. If you are asked to partition a pack of cards into two distinct 

groups, you might sort them into red and black, or into numbered cards and picture 
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cards.  

While we can partition a pack of cards intuitively, imagine the complexities if 

the deck consisted of 10,000 different cards and there are numerous ways to 

describe each card.  To group objects (or customers, families, Decision Making 

Units) under those conditions, we need systematic methods to reduce the 

complexities associated with the multiple dimensions by which each object can be 

described, and the potential combinatorial explosion that can occur if we 

consider every potential way to group a large number of objects. As a first step to 

reducing the complexity, we need a metric to characterize the extent of similarity 

between the objects being clustered. Typically, we use a distance metric to 

characterize similarity. The distance metric serves to compress a 

multidimensional space into a single dimension, namely, distance. Next, we need 

methods to assign elements to different groups based on their extent of 

similarity.  Exhibit 1 illustrates the issue: to form the (three) clusters there, we 

need to know the distances between all pairs of respondents or clusters of 

respondents. While this exhibit covers only two dimensions, distance can be 

defined in multidimensional space: the number of dimensions equals the number 

of variables or factors (if the variables are reduced by factor analysis, described 

later in this appendix) included in the analysis. 

 
EXHIBIT 1 

This exhibit illustrates how distance is measured in cluster analysis. Here there are three clusters (I, 

II, and III); distance b is the distance from the center of cluster I to the center of cluster III, and a 

is the distance from the center of cluster I to one of its member respondents.  
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A systematic approach to cluster analysis consists of the following steps: (1) data 

and variable refinements, (2) segment formation, and (3) interpretation of 

results.  

Data and Variable Refinements 

Choosing the set of variables for analysis: There are numerous 

characteristics that can be associated with customers.  With today’s data 

collection capabilities, it is not unusual for many firms to have several hundred 

variables to describe their customer characteristics (e.g., demographics, 

psychographics, attitudes, activities, behavior).  The first step, therefore, is to 

choose the right variables for analysis.  Variables that have similar values for all 

customers do not provide a good basis for distinguishing between them. On the 

other hand, including variables that strongly differentiate between respondents 

but are not relevant for the purposes at hand could yield misleading results 

(e.g., whether one is tall or short may have little to do with customer needs in 

the toothpaste category). Research has shown that including even a couple of 

irrelevant variables can damage the detection of the segment structure in the data 

(Milligan and Cooper 1987). We suggest that you include a reasonable minimum 

number of variables in the analysis (say, about 10), so that adding or deleting 

any one variable will not appreciably affect the results.  If it is important in a 

particular context to use a large number of variables, or if groups of variables 

seem to be correlated with each other, then it may be worthwhile to do factor 

analysis to pre-process the data before doing cluster analysis.  This procedure is 

described next. 

Using factor analysis to reduce the data: In many segmentation studies, 

market researchers collect data on a wide battery of attitude- and needs-based 

items. If many of those items measure similar or interrelated constructs, then 

subsequent analyses may lead to misleading conclusions because some data are 

overweighted and other data underweighted.  Factor analysis helps reduce a 

correlated data set with a large number of variables into a data set with considerably 

fewer factors. Specifically, we analyze the interrelationships among a large number 

of variables (attitudes, questionnaire responses) and then represent them in terms 

of common, underlying dimensions (factors).  The derived factors not only 

represent the original data parsimoniously, they often result in more reliable 

segments when used in cluster analysis procedures. 

Let X be a m × n data matrix consisting of needs (or attitudinal) data from m 
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respondents on n variables. We start by first standardizing the input data matrix. 

Let Xs represent the standardized data matrix.  In the principal-components 

approach to factor analysis (the most commonly used method in marketing), we 

express each of the original attributes as a linear combination of a common set of 

factors, and in turn we express each factor also as a linear combination of 

attributes, where the jth factor can be represented as 

,...2211 njnjjj xuxuxuP +++=      (1) 

where 

xi = ith column from the standardized data matrix Xs; xki is the element in 

the kth row and ith column of this matrix; 

Pj = the jth column of the factor score matrix representing the scores of 

each respondent on factor j; P=[P1, P2, ... , Pr] is the factor-score 

matrix with r retained factors; and 

u = “loadings” that characterize how the original variables are related to the 

factors.  These are derived by the procedure in such a way that the 

resulting factors Pj’s are optimal. The optimality criterion is that the 

first factor should capture as much of the information in Xs as possible, 

the second factor should be orthogonal to the first factor and contain as 

much of the remaining information in Xs as possible, the third factor 

should be orthogonal to both the first and the second factors and 

contain as much as possible of the information in Xs that is not 

accounted for by the first two factors, and so forth. 

Unlike factor analysis used in attribute-based perceptual maps (see technical 

note on Positioning Analysis), here we work with unstandardized factor scores, 

represented as the factor score matrix P.  Each value of the original data can also 

be approximated as a linear combination of the factors: 

rjkrjkjkkj fpfpfpx +++≈ ...2211       (2) 

The relationships characterized by Equations. (1) and (2) can be seen more 

clearly when represented as matrices (Exhibit 2).  In Exhibit 2, the p’s are the factor 

scores and the f’s are the factor loadings. If r = n, that is, if the number of factors is 

equal to the number of attributes, there is no data reduction. In that case, (2) 

becomes an exact equation (i.e., the approximation symbol in Exhibit 2, ≈, can be 
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replaced by the equality symbol, =) that shows that the standardized data values 

(xkj’s) can be exactly recovered from the derived factors. All that we would 

accomplish in that case is to redefine the original n attributes as n different factors, 

where each factor is a linear function of all the attributes.  For the purpose of data 

reduction, we seek r factors to represent the original data, where r is smaller than n, 

the number of variables we started with. If, for example, we can pick an r that is less 

than 1/3 of n, but where the retained factors account for more than 2/3 of the 

variance in the data, we can then consider the preprocessing of the data to be 

successful. There is, however, always a danger that some important information is 

lost by preprocessing sample data in a way that masks the true cluster structure.  

 

 

EXHIBIT 2 

A pictorial depiction of factor analysis. The model decomposes the (standardized) original data 

matrix (Xs) as a product of two matrices: (1) the unstandardized factor score (P) matrix and (2) 

the factor-loading matrix (F); r is the number of factors retained for further segmentation 

analysis.  

It is often a good idea to run the segmentation model with and without 

preprocessing of the data through factor analysis, to see which set of results make the 

most sense. To aid interpretability of the factors, we can orthogonally rotate the 

initial factor solution (Varimax rotation) so that each original variable is correlated 

most closely with just a few factors, preferably with just one factor. A full discussion 

of this topic is beyond the scope of this book.  The main purpose of factor rotation is 
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to obtain a more interpretable (in terms of the original variables) set of factors as 

shown in Exhibit 3 

 

 Original Factor 
Loading Matrix 

 Rotated Factor 
Loading Matrix 

        

 F1 F2 F3  F1 F2 F3 
X1        
X2        
X3        
X4        
X5        
X6        
X7        
X8        

 

EXHIBIT 3 

This exhibit shows how the structure of the factor loading matrix is altered by rotation.  Each check 

mark indicates that the corresponding variant has a significant correlation with a factor.  After 

rotation, each variable is correlated primarily with only one factor. 

 

We can then use the factor-score matrix with r factors as the set of input 

variables for identifying segments through cluster analysis. By using unstandardized 

factor scores at this stage, we can determine during cluster analysis whether to 

standardize the factor scores, an option that we can select within the cluster analysis 

software provided with Marketing Engineering. 

Specifying a Measure of Similarity: Most cluster analyses also require 

you to define a measure of similarity for every pair of respondents. Similarity 

measures fall into two categories, depending on the type of data that are 

available. For interval and ratio scaled data you can use distance-type 

measures. For nominal data (male/female, for example) you use matching-

type measures. When the data type is mixed, other segmentation methods, for 

example, automatic interaction detection (AID)—described in the next 

subsection—may be most appropriate. 

Similarity-type measures: The following example illustrates the use of 
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matching coefficients. 

 

E X A M P L E  

We ask respondents from four organizations that will purchase a copier 

to state which of its eight features (F) are essential, (F1=sorting, 

F2=color, etc.) with the following result: 

Essential Features? (Yes or No) 

  F1 F2 F3 F4 F5 F6 F7F8 

 Organization A Y Y N N Y Y Y Y 

 Organization B N Y N N N Y Y Y 

 Organization C Y N Y Y Y N N N 

 Organization D Y N N N Y Y Y Y 

 

Then, here is one way to define a similarity measure (or a similarity 

coefficient) among these organizations by considering all eight features: 

 Similarity coefficient = number of matches/total possible matches. 

The resulting associations are shown in Exhibit 4. 

Analysts can develop other types of matching coefficients in a similar fashion, 

often weighting differences between positive and negative matches differently. 

For example, suppose we counted only the number of positive (Yes-Yes) matches;  

in that case there would still be a possibility of eight matches, but organizations A 

and B would have only four of those possible eight matches (4/8) instead of the 

six (6/8) shown in Exhibit 4. 
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EXHIBIT 4 

Similarity data for “essential features” data: firms A and B match on 6 of their essential features 

needs (Y-Y or N-N) out of 8 possible matches.  

 

Distance-type measures fall into two categories: measures of similarity or 

measures of dissimilarity, where the most common measure of similarity is the 

correlation coefficient and the most common measure of dissimilarity is the 

(Euclidean) distance. 

Two common distance measures are defined as follows: 

Euclidean distance = ( ) ( ) ,... 22
11 njniji xxxx −++−    (3) 

where i and j represent a pair of observations, xki=value of observation i on the 

kth variable, and 1 to n are the variables. 

Absolute distance (city-block metric) = ,...11 njniji xxxx −++−  (4) 

where | | means absolute distance.     

All distance measures are problematic if the scales are not comparable, as the 

following example shows. 

E X A M P L E  

Consider three individuals with the following characteristics: 
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  Income ($ thousands) Age (years) 

 Individual A 34 27 

 Individual B 23 34 

 Individual C 55 38 

 

Straightforward calculation of Euclidean distances across these two 

characteristics gives 

2.32,7.23,0.13 === BCACAB ddd  

However, if age is measured in months, rather than years, we get 

6.57,6.133,7.84 === BCACAB ddd  

In other words, when we use months, individuals B and C are closest together; 

when we use years they are farthest apart! 

To avoid this scaling problem, many analysts standardize the data (subtract 

mean and -divide by the standard deviation) before doing the distance 

calculation. This allows them to weight all variables equally in computing the 

distance in Equation (3). In some cases, however, it is important not to 

standardize the data; for example, if the segmentation is being done on needs 

data obtained by such procedures as conjoint analysis, the values of all the 

variables are already being measured on a common metric.  Standardizing could 

then mask important and meaningful differences between the weights that 

customers (implicitly) assign to different product attributes or attribute options. 

A frequently used measure of association is the correlation coefficient, 

calculated as  

follows:  

22
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Warning: The correlation coefficient incorporates normalization in its 

formula. However, it also removes the scale effect. So an individual who gives 

uniformly high ratings (7’s on a 1 to 7 scale) on all items would be perfectly 

correlated (r=1) with two other individuals, one who also gave all high ratings and 

another who gave all low ratings (all 1’s on a 1 to 7 scale)! For this reason, we feel 

that, while correlation coefficients are commonly used in segmentation studies, 

the results of such studies should be carefully scrutinized. 

We recommend that if you have interval-level data, you standardize that data 

first (subtract its mean and divide by its standard deviation) and use a Euclidean 

distance measure. 

Segment Formation: After developing a matrix of associations between the 

individuals in every pair, you are ready to do the cluster analysis. There are two 

basic classes of methods: 

• Hierarchical methods, in which you build up or break down the data row by row 

• Partitioning methods, in which you break the data into a prespecified number 

of groups and then reallocate or swap data to improve some measure of 

effectiveness 

The Marketing Engineering software includes one method of each type—

Ward’s (1963) (hierarchial) and K-means (partitioning) -- which are among the 

most popular segmentation methods used in practice. 

Hierarchical methods produce “trees,” formally called dendograms. Hierarchical 

methods themselves fall into two categories: build-up (agglomerative) methods and 

split-down (divisive) methods. 

Agglomerative methods generally follow this procedure: 

 1. At the beginning you consider each item to be its own cluster. 

 2. You join the two items that are closest on some chosen measure of 

distance. 

 3. You then join the next two closest objects (individual items or clusters), 

either joining two items to form a group or attaching an item to the 

existing cluster. 

 4. Return to step 3 until all items are clustered. 
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EXHIBIT 5 

This distance matrix yields one dendogram for single linkage clustering (solid line) and another for 

complete linkage clustering (dotted line). The cluster or segments formed by companies 1 and 2 

join with the segment formed by companies 3 and 4 at a much higher level in complete linkage 

(3.42) than in single linkage (1.81). In both cases company 5 appears to be different from the other 

companies—an outlier. A two-cluster solution will have A=5, B={1, 2, 3, 4}, while a three-cluster 

solution will have A=5, B=(1, 2), and C=(3, 4).  

Agglomerative methods differ in how they join clusters to one another: 

In single linkage clustering (also called the nearest neighbor method), we 

consider the distance between clusters to be the distance between the two closest 

items in those clusters. 

In complete linkage clustering (also called the farthest neighbor method), we 

consider the distance between two clusters to be the distance between the pair of 

items in those clusters that are farthest apart; thus all items in the new cluster 

formed by joining these two clusters are no farther than some maximal distance 

apart (Exhibit 5). 

In average linkage clustering, we consider the distance between two clusters 

A and B to be the average distance between all pairs of items in the clusters, 
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where one of the items in the pair is from cluster A and the other is from cluster 

B. 

In Ward’s method, we form clusters based on the change in the error sum of 

squares associated with joining any pair of clusters (see the following example). 

E X A M P L E  

This example is drawn from Dillon and Goldstein (1984). Suppose that we have five 

customers and we have measurements on only one characteristic, intention to 

purchase on a 1 to 15 scale: 

 Customer Intention to purchase 

 A  2 

 B  5 

 C  9 

 D 10 

 E 15 

Using Ward’s (1963) procedure, we form clusters based on minimizing 

the loss of information associated with grouping individuals into clusters. 

We measure loss of information by summing the squared deviations of 

every observation from the mean of the cluster to which it is assigned. 

Using Ward’s method we assign clusters in an order that minimizes the 

error sum of squares (ESS) from among all possible assignments, where 

ESS is defined as 
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where Xij is the intent to purchase score for the ith individual in the jth 

cluster; k is the number of clusters at each stage; and nj is the number of 

individuals in the jth cluster. Exhibit 6(a) shows the calculations, and 

Exhibit 6(b) is the related dendogram. The ESS is zero at the first stage. At 

stage 2, the procedure considers all possible clusters of two items; C and D 

are fused. At the next stage, we consider both adding each of the three 

remaining individuals to the CD cluster and forming each possible pair of 
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the three remaining unclustered individuals; A and B are clustered. At the 

fourth stage, CDE form a cluster. At the final (fifth) stage, all individuals 

are ultimately clustered. 

 

 

EXHIBIT 6a 

Summary calculations for Ward’s ESS (Error Sum of Square) method. Source: Dillon and 

Goldstein 1984, p. 174.  

 
 

EXHIBIT 6(b) 

Dendrogram for Ward’s ESS method. Source: Dillon and Goldstein 1984, p. 174.  

In using divisive methods, we successively divide a sample of respondents. 

One popular method is automatic interaction detection (AID). It can be used with 

both categorical and scaled data. It works as follows: we determine group means 

on the dependent variable—brand usage, for example—for each classification of 
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the independent variables and examine all dichotomous groupings of each 

independent variable. Suppose that there are four categories of job classification: 

professional, clerical, blue-collar, and other. We examine the group means on the 

dependent variable for all dichotomous groupings: blue-collar versus the other 

three categories, blue-collar plus professional versus the other two categories, 

and so on. Then we split each independent variable into two nonoverlapping 

subgroups providing the largest reduction in unexplained variance. We choose 

the split to maximize the between sum of squares (BSS) for the ith group (the 

group to be split). 

We then split the sample on the variable yielding the largest BSS, and the 

new groups formed become candidates for further splitting. The output can take 

the shape of a tree diagram, each branch splitting until terminated by one of 

three stopping rules: (1) a group becomes too small to be of further interest, (2) a 

group becomes so homogeneous that further division is unnecessary, or (3) no 

further possible division would significantly reduce BSS.  For further details and 

an interesting application by AT&T, see Assael and Roscoe (1976).  Exhibit 7 

summarizes the type of results we can get from AID analysis. 

Partitioning methods, unlike hierarchical methods, do not require us to 

allocate an item to a cluster irrevocably—that is, we can reallocate it if we can 

improve some criterion by doing so. These methods do not develop a treelike 

structure; rather they start with cluster centers and assign those individuals 

closest to each cluster center to that cluster. 

The most commonly used partitioning method is K-means clustering. The 

procedure works as follows: 
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EXHIBIT 7 

AID tree from segmentation of the long-distance market by average monthly long-distance 

expenditures in 1972, showing the optimal breakdowns for each customer variable. Source: Assael 

and Roscoe 1976, p. 70.  

 1. We begin with two starting points (cluster centers) and allocate every item 

to its nearest cluster center. 

 2. Reallocate items one at a time to reduce the sum of internal cluster 

variability until we have minimized the criterion (the sum of the within-

cluster-sums of squares) for two clusters. 

 3. Repeat steps 1 and 2 for three, four, or more clusters. 

 4. After completing step 3, return to step 1 and repeat the procedure with 

different starting points until the process converges—we no longer see 

decreases in the within-cluster sum of squares. 

While there are many ways to determine starting points, we recommend 

using the output of Ward’s procedure to give good starting points (this is the 

procedure we used in the Marketing Engineering software). 

The number of clusters (K) to use is usually based on managerial judgment, 

but certain indices can also help us to determine an appropriate number of 

clusters. In hierarchical clustering, we can use the distances at which clusters are 

combined as a criterion—for example, in the dendogram output from the 

software (Exhibit 6(b)), and select the solution (number of clusters) for which 

distances between clusters are reasonably large. In using partitioning methods, 

we can study the ratio of total within-group variance to between-group variance 



 17 

and use the number of clusters at which this ratio stabilizes. In either case, as we 

increase the number of clusters, we should be looking for a big improvement in 

our criterion followed by a smaller improvement, as an indication that there is 

little benefit to producing finer clusters. 

Interpreting Segmentation Study Results: After forming segments by 

following one of the foregoing methods, we need to interpret the results and link 

them to managerial actions. We can base targeting and positioning decisions on 

the results of a segmentation analysis. Technically, we need to address such 

issues as how many clusters we should retain, how good the clusters are, the 

possibility that there are really no clusters, and how we should profile the 

clusters. 

How many clusters to retain? There is no unambiguous statistical answer to 

this question. We should determine the number of clusters by viewing the results 

of the cluster analysis in light of the managerial purpose of the analysis.  Do not 

overlook this possibility. If only a few basis variables show meaningful differences 

between individuals, it is possible that no really distinct segments exist in the 

market. 

How good are the clusters? How well would the clusters obtained from this 

particular sample of individuals generalize to the sampling frame? No one 

statistical or numerical scheme can, by itself, be sufficient to judge the validity of 

clusters. We need knowledge of the context to make sense of the results. We 

should also ask: Do the means of basis variables in each cluster make intuitive 

sense (have face validity)? Can we think of an intuitively appealing name, for 

example, techno-savvy or mobile bloomers, for each of the resulting clusters? 

Segment Formation Using Latent Cluster Analysis2 

There is growing use of “finite mixture models” (also called latent class 

models) to identify market segments because computational resources now 

available make it feasible to apply these methods to practical problems, even with 

large data sets.  Unlike the traditional approaches to segmentation presented 

above, the mixture models are based on well-specified probability models for the 

potential sub-populations in a population of customers.  Thus, we can apply well-

                                                 
2 Although much of the discussion in this section would apply to any software designed for latent cluster 

analysis, our description here is particularly relevant for the Marketing Engineering software 

implementation. 
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established statistical theory (e.g., maximum likelihood estimation, Bayesian 

analysis) for determining the number of segments, and for characterizing the 

differentiating features of each segment.  Other advantages of latent cluster 

models, as compared to traditional methods, are: (1) we can incorporate nominal, 

ordinal, and continuous variables in the model specification and, (2) the scaling 

of the variables will not affect the segmentation results.  The main disadvantage 

compared to traditional methods is that latent class models typically require a 

much larger sample size for reliable estimation.  

The standard mixture models are described in detail in several sources 

including, Titterington, Smith, and Makov (1985) and Wedel and Kamakura 

(2000).  The Marketing Engineering software uses a Bayesian extension of the 

standard mixture model, which reduces the possibility of over-fitting (i.e., finding 

more segments than there truly are in the population).  Here, we provide an 

outline of the method.  First, we outline the standard mixture model for 

segmentation, and then indicate the Bayesian extension.  Further details are 

available in Cheeseman and Stutz (1996).  As described with reference to the 

traditional methods, you must first ensure that you have selected the right set of 

basis variables for analysis.   

Outline of Latent Cluster Analysis: Each respondent (customer) i in the 

study is hypothesized to belong to one of S segments, (1, 2, …s, … S), but S is 

unknown.  In the population, the unknown proportions of the segments are given 

by π = (π1, π2,  πs,…πS) with 0 ≤ πs ≤ 1 and .1
1

=∑
=

S

s
sπ  

For each respondent, we observe a vector of data Xi (m×1) consisting of 

variables, Xi1, Xi2, …Xim.  Typically, these variables should characterize customer 

needs, i.e., they are the basis variables for segmentation, and could be obtained 

from surveys or secondary data sources.  In our implementation, the variables 

could either be nominal (e.g., “true” or “false”; “blue”, “red”, or “other”) or 

continuous (e.g., attitude toward driving, income).  Note that in traditional 

segmentation, the variables can only be continuous in order to compute the 

“distances” between respondents and segments.  In latent class models, 

“distances” are replaced by probabilities to denote the likelihood of the 

respondent belonging to each segment.   

If we know the segment s from which we observe Xi, then the conditional 

distribution for this vector of observations can be specified as fs(Xi|θs), where θs 

denotes the vector of all unknown parameters associated with the density 
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function fs(.).  Thus, we assume that all respondents in a segment share the same 

distribution, with the parameters of the distribution being θs.  For example, if Xi 

is from a multivariate Normal distribution, then θs = (μs, Σs), where μs is vector of 

means and Σs is the variance-covariance matrix.  Typically, however, we assume 

that Xik’s are distributed independently within each segment, or equivalently, this 

assumption means that if we know the segment to which a customer belongs, 

then knowing the value of a particular variable Xik for that customer does not 

provide us any information about the value of another variable Xij, for j ≠ k. As an 

example, this would mean that if we know the price that a customer paid, we 

would not be able to say anything about how satisfied that customer might be.  

Though such an assumption of “local independence” is not necessary, if we do not 

make such an assumption, the number of model parameters escalates quickly, 

resulting in the need for a large number of sample respondents for model 

estimation.  Typically, we need at least 5-10 respondents per parameter for 

reliably estimating segment parameters (This means that if we have a 5-segment 

model, each with 10 parameters, we may need data from perhaps 500 to 1,000 

respondents for estimating the model, assuming that the smallest segment may 

turn out to have just 50 respondents).   

Let θ = (θ1, θ2, ….θS), be the stacked vector containing the parameter vectors of 

the conditional distributions fs(.) for all the segments, and let X = (X1, X2, … XN) 

be the set of observations we have from N respondents participating in the study. 

Then, from the theorem of total probabilities, we can specify the unconditional 

distribution for Xi as: 
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And, we get the likelihood for the parameters (π, θ), given the observed data X, 

as: 
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In specifying Eq. (8), we make the standard assumption that the observations 

are independent given the segment distribution, π.  In other words, any similarity 

between two customers is accounted for by their segment memberships.  

Therefore, the joint likelihood of the sample of observations is the product of the 

individual likelihoods: 

We can now generate a Bayesian formulation for the standard mixture model by 

specifying prior distributions for the parameters θ, as follows: 
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Model Estimation: Equation (9) is proportional to the posterior distribution of 

the parameters (π, θ).  For given f(.), the software chooses the appropriate 

generally uninformative priors g(.). For nominal (categorical) variables Xik, for 

example, f(.) can be specified as a Bernoulli with a uniform Dirichlet prior.  To 

specify distributions for multivariate nominal variables, we can take all possible 

combinations of the values of those variables and create a composite univariate 

nominal variable in the combinations.  However, such an approach could quickly 

lead to an explosion of parameters, and has to be used judiciously.  For Xik that 

are continuous, we can specify f(.) as Normal with the prior for μ being Uniform 

or Normal.  In the case of multivariate Normal, we can use the inverse Wishart 

distribution as the prior.  Choice of conjugate prior distributions can simplify the 

estimation procedure.   

Equation (9) can be highly non-linear and estimating S, π, and θ from it is 

challenging, even when we use conjugate prior distributions.  The possibilities of 

“local maxima” are a major concern.  The approach that the Marketing 

Engineering software uses for estimation is called Maximum a Posteriori (MAP), 

which provides point estimates for the parameters.  MAP involves maximizing 

the log of the posterior distribution, using an adaptation of the Expectation-

Maximization (EM) algorithm.  The solution approach is based on numerical 

optimization combined with some heuristics, which are described in Cheeseman 

and Stutz (1996).   

At the conclusion of the analysis, we get segments that differ not only in the 

mean values of the variables, but may also differ with respect to the variances of 

the variables, and even with respect to the correlations among the variables.  

Thus, this procedure provides a very powerful and general way to partition the 

total market of customers into segments. 

Interpreting and Using Results From Latent Class Models 

Log-Likelihood values: Software programs for latent class models report the 

Log-Likelihood (LL) associated with each solution.  This is a negative number 

that has a range (-∞, 0), with a larger number (closer to 0) indicating a better 

segmentation solution. The difference between the log-likelihood values raised to 

the power of e gives the relative probability of the different segmentation 

schemes (note that sometimes the relative probability number can be very large 

because of the extremely small numerical values involved in likelihood 
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computations).  A difference of 100 between two different segmentation schemes 

means that one is e100 times more likely (a very large number).  Such huge 

differences in LL suggest that the segment scheme with the higher probability is 

overwhelmingly more likely than the segment with the smaller probability value.  

(This also means that if you did not provide the program sufficient time to do an 

exhaustive search, it may have missed an overwhelmingly superior solution).   

AIC and BIC criterion: Software for latent class analysis also typically report 

the AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) 

indices, both of which indicate superior model performance the closer they are to 

0.  These indices enable the modeler to determine the number of segments in the 

data, i.e., to choose the model for which the number of segments results in an 

index value closest to 0.  The AIC criterion enables the analyst to trade off model 

fit against model complexity.  Model fit can be improved by adding more 

variables, which however may increase complexity, or overweight unimportant 

aspects that are disproportionately present in the sample as compared to their 

presence in the population.  In addition to accounting for the number of variables 

in the model, the BIC criterion accounts for sample size.  We recommend the BIC 

criterion, unless the modeler has knowledge about the pros and cons of each 

index in a specific application.  For further details on these indices as well as 

about the EM algorithm, see Jagpal (1999) and Wedel and Kamakura (2000). 

Cross-Entropy:  This is a commonly used measure of the divergence between 

two probability distributions, and ranges from 0 for identical distributions to 

infinity for maximally divergent distributions.  This index provides a measure of 

how differentiated a segment’s characteristics are from the characteristics of the 

complete data set (undifferentiated data).  

The final set of results from latent class segmentation analysis only help us to 

identify the most probable segment to which each customer or prospect belongs.  

For purposes of managerial action, however, we can assign a customer to that 

segment to which that customer has the highest probability of belonging. 

Latent cluster analysis helps us to identify the number of segments that are 

hidden (latent) in the data, and the segment to which each respondent i belongs.  

However, statistical analyses alone cannot reveal the best way to segment a 

market.  For example, it is possible that a segmentation scheme may simply 

reflect data or sample problems, rather than the intrinsic structure of the 

markets.  Therefore, we should augment the results of statistical analyses with 
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managerial domain knowledge and insights about the company and its customers 

for the proper interpretation and use of the results from latent cluster analysis.  

Profiling and Targeting Tools 

Once we identify the appropriate number of segments and the respondents 

who belong to each segment, we can begin the process of profiling the members 

of those segments.  In cluster profiling, we attempt to create a "picture" of the 

members of the clusters using all the variables of interest -- both those variables 

used for the clustering (the bases) and those variables withheld from the 

clustering but which are used to identify and target the segments (the 

descriptors).  Descriptors typically include observable characteristics about 

respondents that are readily discernable, or can be obtained at relatively low cost, 

such as demographics, media habits, type of vehicles owned, and size of company 

(B2B). Typically, in profiling a cluster, we report the average value of both the 

basis and the descriptor variables in each cluster in the profile. 

Discriminant Analysis: A formal method for profiling that is useful in 

segmentation applications is discriminant analysis. In discriminant analysis, we 

use a selected set of descriptor variables to predict who is, or who is not, likely to 

belong to a particular segment. Using discriminant analysis, we look for linear 

combinations of variables that best separate all the clusters or segments.  

Specifically, we look for linear combinations of descriptors that maximize 

between-group variance relative to within-group variance.  We will use an 

example to illustrate how discriminant analysis works. Exhibit 6 shows the 

results of a segmentation study on the need for wireless Internet access, where 

one segment (X) is the high-need segment and other segment (O) is the low-need 

segment. 

In Exhibit 6, the two segments determined from cluster analysis are plotted 

on two descriptor variable axes: number of employees and firm profitability. 

Segment X apparently comprises firms with fewer employees and higher 

profitability than segment O.  Although there is considerable overlap between the 

two segments on each of the variables (particularly on firm profitability), there is 

less overlap along the discriminant function Y (= a1X1 + a2X2).  Firm size appears 

to discriminate better than firm profitability. (While the output of discriminant 

analysis provides formal ways to see this, our picture shows that there is more of 

a split between X’s and O’s from east to west—number of employees—than from 

north to south—profitability). The discriminant function exhibits the property of 
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maximizing the between-group variability while at the same time minimizing the 

within-group variability.  For each individual, there is an associated pair of values 

(X1 and X2) and hence a corresponding value of the discriminant score Y (for any 

given a1 and a2).  Discriminant Analysis solves the following problem: Given a set 

of values of X1 and X2 for several individuals, determine a1 and a2 such that the 

following ratio is maximized: 

YalonggroupswithinVariance
YalongmeansgroupbetweenVariancer =    (10) 

If many descriptor variables are included in the analysis, we may need more 

than one discriminant function (axis) to best discriminate between the members 

of the market segments.  If we have N customers and k variables, the "profile" of a 

customer may be represented by a point in k-dimensional space.  If discriminant 

analysis is to prove useful, it is necessary for the individuals to occupy somewhat 

different and distinct parts of this space instead of being randomly scattered.  If 

there are n segments and m descriptor variables, then the maximum number of 

discriminant functions is equal to the smaller of n-1 and m.  This leads to a 

family of discriminant functions: 

 

   Y1 = a11X1 + a12X2 ...... + a1kXk 

   Y2 = a21X1 + a22X2 + ...... + b2kXk 

   . 

   . 

   Ym = am1X1 + am2X2 + ...... + amkXk   (11) 

 

The first discriminant function (Y1) provides the maximum separation 

between the groups.  The second discriminant function (Y2) is uncorrelated 

(orthogonal) to Y1 and provides the next maximum separation between the 

groups and so on.  The conceptual approach is similar to the two-group case.  

However, as you might already have guessed, the details become more complex! 

Discriminant analysis ties us intimately to the targeting decision. As we 

move northwest along the the discriminant function in Exhibit 8, the 

likelihood of segment X membership increases. Indeed, if such descriptor 

variables as number of employees and firm profitability are readily available, 
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we can compute the discriminant score for that customer, and use that score 

to assess the likelihood of segment membership of that customer.  Note that 

it is not necessary for that customer to have participated in the segmentation 

study for the firm to be able to target that customer using the discriminant 

score.  The firm can further create specific marketing programs for each 

segment, which allows it to target the customers in that segment.   

Interpreting Discriminant Analysis results: To determine whether the 

results of a discriminant analysis are acceptable for implementation, we suggest 

the following criteria: 

To determine the predictive validity of discriminant analysis (how well the 

discriminant functions, taken as a whole, predict the group membership of each 

individual included in the analysis), we first form a classification matrix that 

shows the actual cluster to which an individual in the sample belongs and the 

group to which that individual is predicted to belong. (We determine predicted 

group membership by computing the distance between an individual and each 

group centroid along the discriminant function[s].  We assign each individual 

to the group with the closest centroid.) The hit rate gives the proportion of all 

the individuals that are correctly assigned. The higher the hit rate, the higher 

the validity of the discriminant functions in finding meaningful differences 

among the descriptor variables between the clusters. (The Marketing 

Engineering software computes the hit rate on the same sample on the 

discriminant function is developed. This is a weaker method for predictive 

validation than using a hold-out sample for validation.) 

The statistical significance of each discriminant function indicates whether 

that discriminant function provides a statistically significant separation between 

the individuals in different clusters. The variance explained by each 

discriminant function is a measure of the operational significance of a 

discriminant function. Sometimes, especially if we have a large sample, a 

discriminant function that is statistically significant may actually explain only a 

small percentage of the variation among the individuals. Discriminant functions 

that explain less than about 10 percent of the variance may not provide 

sufficient separation to warrant inclusion in further analyses. 
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EXHIBIT 8 

Two-group discriminant analysis example, showing that the number of employees discriminates 

well between the clusters while the firm’s profitability does not.  

 

The correlations between our variables and the discriminant functions 

are also called structure correlations and discriminant loadings. If a variable 

has high correlation with a statistically and operationally significant 

discriminant function, then that variable is an important descriptor variable 

that discriminates among the clusters. The square of the correlation coefficient 

is a measure of the relative contribution of a variable to a discriminant 

function. To facilitate interpretation in the output of the Marketing 

Engineering software, we report the correlations between variables and 

discriminant functions in the order of absolute size of correlation within each 

discriminant function, putting the most important variable first. If correlations 

are small for a variable, it means either that the variable does not offer much 

discrimination between clusters, or that it is correlated with other variables 

that overshadow its effects. 

Discriminant analysis provides information that is useful in profiling 

clusters. We should first examine the mean values of descriptor variables that 

are highly correlated (say, absolute correlations greater than 0.6) with the 

most important discriminant function. If these means are sufficiently different 

and managerially meaningful, we can use these variables as the basis on which 
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to develop marketing programs for the selected segments. We should then 

examine the mean values of the descriptor variables that are associated with 

the next most important discriminant function, and so on, repeating the 

procedure for each discriminant function. 

Classification Trees:  As in discriminant analysis, the objective of 

classification trees is to use a set of descriptor variables to predict who is, or who 

is not, likely to belong to a particular segment.  However, unlike discriminant 

analysis, which requires us to use the entire set of variables retained to compute a 

discriminant score, here we organize the discrimination process in the form of a 

tree, and we can “cut off” the tree at any point and make predictions about 

segment membership.  The ability to do such cut-offs is becoming increasingly 

important in web and call-center applications, where there is an opportunity to 

interact with a potential customer or prospect to elicit responses to specific 

questions, or to assess other characteristics of the customer (e.g., recognizing 

someone as male or female in a telephone call, or recognizing that the web visitor 

is already a customer).  Typically, we use binary trees, i.e., a tree in which each 

branch has two leaves, as shown in Exhibit 9. 
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EXHIBIT 9 

This exhibit shows a binary classification tree that can be used for targeting.  

Outline of classification tree methods:  A full discussion of the technical 

aspects of CART is beyond the scope of this note.  The interested reader can refer 

to many standard sources on this topic, including Breimen et al. (1993).  Briefly, 

the estimation algorithm attempts to minimize the “costs of misclassification.” If 

the costs of misclassification is the same for every segment, then we can focus on 

minimizing just the overall proportion of misclassified cases.  Otherwise, we need 

to define and use the appropriate “loss function” to guide misclassification cost 

minimization (see below).  For example, in some cases, it is far more important to 

target customers in a high-value segment more accurately than it is to target 

customers in a low-value segment.  Typically, it is also useful to compute 

misclassification costs on a validation sample that is different from the sample on 
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which the tree was developed.  Here is a popular index (called the Gini measure) 

to compute misclassification at a node on the tree: 

∑=
≠ij

jipTjpjiCTg )|()|()|()(      (12) 

where T is a data set consisting of N customers in K segments, C(i| j) is the 

relative cost of misclassifying a customer in segment j into segment i, p(j|T) is the 

probability (computed based on frequency counts) of a customer belonging to 

segment j, and p(i| j) is the probability that someone in j will be misclassified as 

belonging to i.  If the relative costs of misclassification are normed so that they 

sum to 1, then g(T) varies from 0 to 1.  At any given node, further splitting is done 

by selecting a variable and an associated rule to assess how the Gini measure 

would improve with the split.  The revised Gini measure is: 
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where N1 and N2 are the number of customers in each sub-group after the 
split according to the selected rule.  At each node, the estimation algorithm 
uses a “greedy” heuristic to select the variable split that smallest value of 
gsplit(T).  

To develop managerially useful trees, we may need to prune an 
estimated tree to reduce the number of questions (variables) used for 
classification.  This involves an assessment of the tradeoffs between 
accuracy of prediction and the effort required to obtain the data for 
classification.  Typically, our experience is that about 5 to 10 very 
carefully selected variables can provide a relatively high degree of 
accuracy for purposes of segmentation. However, we may need to start 
with 50 to 100 potentially useful classification variables in order to 
identify the best ones useful for classification. 

Summary 

We described two broad categories of data-based segmentation analysis 

techniques in use in marketing: (1) Traditional segmentation methods, and (2) 

Latent cluster analysis.  There are numerous variants of these methods, and 



 29 

there are several other well-known methods available that we did not describe 

(e.g., neural networks).  Traditional segmentation methods generally work well 

when we have interval-level measurements.  They are especially useful when 

we have a small sample from which to infer the segment structure of the 

market.  We also described latent class methods, which are finding greater use 

in marketing, because of their theoretical appeal, as well as availability of 

larger data sets and greater computing resources.  These methods require 

more sophistication in their application and also require larger data sets for 

analysis. 

A logical next step after segmentation analysis is the development of a 

targeting plan.  We described two commonly used methods for targeting: (1) a 

scoring rule method implemented via discriminant analysis, and (2) Binary 

classification tree.   
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