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Introduction 
This technical note outlines the "rocket science" behind positioning 

analysis.  Formal positioning analysis is based on three core concepts: (1) 

Customer perceptions, (2) Customer preferences, and (3) Customer choices.  

Perceptions refer to beliefs that customers have about various offerings 

available in the markets (e.g., A Volvo is a safe car).  Preferences refer to mental 

states or processes that give customers the ability to set in their minds one 

offering before another in terms of their overall desirability to them (e.g., I 
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prefer a BMW to Volvo).  Choices involve the process of judging the merits of 

multiple offerings and selecting one for further consideration or purchase (e.g., I 

want to test drive a BMW).  Choice does not necessarily mean purchase – one 

could choose online and purchase offline.  Generally, we believe that perceptions 

drive preferences, which in turn, trigger choices and purchases.  However, people 

need not necessarily purchase items they prefer more – for example, many 

people prefer healthy items to less healthy items, but they are also likely in some 

cases to choose potato chips over yogurt.  Also, in some situations, preferences 

need not necessarily be driven by perceptions, although people can offer post-hoc 

reasons for their preferences.  

Positioning analysis is facilitated by various mapping techniques that 

provide a visual representation of customer perceptions and/or preferences and 

how those drive choices. There are various mapping methods used in 

marketing.  Mapping of perceptions vary depending on the nature of input data 

(e.g., data on how various offerings are similar or dissimilar to each other, or 

customers ratings or evaluations of various offering on different attributes).  

The various methods are summarized in Exhibits 1 and 2.  We will describe 

three major approaches in greater detail: (1) perceptual maps from attribute-

based data, (2) preference maps based on ideal points, and (3) joint-space 

maps. 

 

 
EXHIBIT 1 

Mapping methods used in marketing fall into three categories: (1) perceptual maps,  

(2) preference maps, and (3) joint-space maps.  
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EXHIBIT 2 

A summary of the major perceptual, preference, and joint-space modeling methods, their 

required inputs and outputs, and several computer programs that implement each method.  

Description of Attribute-Based Perceptual Mapping 

Perceptual mapping techniques offer a systematic method for extracting 

information about the underlying construct(s) from a data matrix consisting of 

customer perceptions on observable attributes. While there are several 

methods for doing this with attribute-based data, Hauser and Koppelman 

(1979) recommend factor analysis. We will describe the factor analysis 

procedure. The model we will use is called MDPREF, which contains options for 

a factor-analytic derivation of perceptual maps (Carroll 1972, and Green and 

Wind 1973). 

Outline of the factor analysis procedure: Factor analysis is a technique 

for systematically finding underlying patterns and interrelationships among 

variables (here, attributes), based on a data matrix consisting of the values of the 
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attributes for a number of different alternatives (brands, product classes, or other 

objects). In particular, it enables us to determine from the data whether the 

attributes can be grouped or condensed into a smaller set of underlying 

constructs without sacrificing much of the information contained in the data 

matrix. Factor analysis is also useful in preprocessing data before undertaking 

segmentation studies, as described in the appendix to this note. 

Let X be a matrix with m rows and n columns, in which the column headings 

are attributes and the rows are alternatives, with the data in the matrix consisting 

of the average ratings of each alternative on each attribute by a sample of 

customers. Note that X is the transpose of the example data matrix for perceptual 

mapping shown in the previous subsection. Let Xs represent a standardized 

matrix in which each column of X has been standardized. (To standardize a 

column, for each value we subtract the mean of all values on that attribute and 

divide by the standard deviation of the values. By standardizing we remove the 

effect of the measurement scale and ensure that all variables are treated equally 

in the analysis—i.e., it would not matter whether income is measured in dollars or 

pesos.) We denote the columns of Xs as x1, x2, ..., xn. 

In the principal-components approach to factor analysis (the most commonly 

used method in marketing), we express each of the original attributes as a linear 

combination of a common set of factors, and in turn we express each factor also 

as a linear combination of attributes, where the jth factor can be represented as 

 

njnjjj xaxaxaF +++= ...2211       (1) 

 

where the a’s are weights derived by the procedure in such a way that the 

resulting factors Fj’s are optimal. The optimality criterion is that the first factor 

should capture as much of the information in Xs as possible, the second factor 

should be orthogonal to the first factor and contain as much of the remaining 

information in Xs as possible, the third factor should be orthogonal to both the 

first and the second factors and contain as much as possible of the information 

in Xs that is not accounted for by the first two factors, and so forth. 

Each value of the original data can also be approximated as a linear 

combination of the factors: 

 

,...2211 rjkrjkjkkj fzfzfzx +++≈      (2) 
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where the zkl’s and fij’s are also outputs of the factor analysis procedure. 

The relationships characterized by Eqs. (1) and (2) can be seen more clearly 

when represented as matrices (Exhibit 3). In Exhibit 3, the z’s are called 

(standardized) factor scores and the f’s are the factor loadings. Then Zs is the matrix 

of standardized factor scores, and F is the factor loading matrix, with columns 

denoted as Fj, and those factor scores represent the correlation matrix of attributes 

with factors. (Note that the factors-by-attributes matrix in Exhibit 3 is actually the 

transpose of the F matrix.) If r=n, that is, if the number of factors is equal to the 

number of attributes, there is no data reduction. In that case, (2) becomes an exact 

equation (i.e., the approximation symbol in Exhibit 4.10, ≈, can be replaced by the 

equality symbol, =) that shows that the standardized data values (xkj’s) can be 

exactly recovered from the derived factors. All that one would accomplish in that 

case is to redefine the original n attributes as n different factors, where each factor is 

a linear function of all the attributes. However, in perceptual mapping we seek r 

factors (r typically being 2 or 3) that retain as much of the information contained in 

the original data matrix as is possible. Variance (the dispersion of values around a 

mean) is a measure of the information content of an attribute. The larger the 

variance, the higher the information content. Once we standardize the attributes, 

each attribute contains one unit of variance (except for attributes for which all 

values are identical, in which case the information content of that attribute is equal 

to 0). If there are n attributes in the analysis, then the total variance to be explained 

(information content) is equal to n. 
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EXHIBIT 3 

A pictorial depiction of attribute-based perceptual mapping. The model decomposes the 

(standardized) original data matrix (Xs) as a product of two matrices: (1) the standardized factor 

score (Zs) matrix and (2) the factor-loading matrix (F); r is the number of factors (dimensions of 

the perceptual map) and is usually set to be equal to 2 or 3.  

 

The output of a factor analysis procedure is illustrated graphically in 

Exhibit 4 for the case of two attributes, elegance and distinctiveness, in a study 

of notebook computers. The procedure first finds a factor along which the 

points are maximally dispersed (i.e., this factor has the maximal variance when 

we project the points onto it). In this example the locations of the notebook 

computers are dispersed much more along factor 1 than factor 2. If factor 1 has 

a variance equal to 1.7, this factor alone accounts for 85 percent of the 

information content in the two attributes ([1.7 / 2.0]×100), suggesting that 

“elegance” and “distinctiveness” are correlated and possibly refer to a common 

underlying dimension called “design.” The procedure then finds a second 

factor, orthogonal (perpendicular) to the first, which maximally recovers the 

remaining variance. In this case the remaining factor will recover 15 percent of 

the variance; together the two factors explain all the variance in the data. If 

there are n attributes, the procedure continues in this fashion until it extracts 

as many factors (up to n), all orthogonal to each other, as are needed to explain 



 7

the variance in the original data. 

 

 

 

EXHIBIT 4 

A two-attribute example of factor analysis for notebook computers. “Distinctiveness” and 

“elegance” are correlated with each other, and they are represented by an underlying factor 

(dimension) called “design.” For this example a one-dimensional map captures most of the 

variation among the notebook computers.  

 

Interpreting factor analysis output. An important objective of factor 

analysis is to provide an interpretation of the underlying factors in terms of the 

original attributes. The key to interpretation is the factor-loading matrix F. By 

looking at the pattern of the loadings, we should be able to identify and name the 

factor. Loadings that have high absolute value (high absolute values of correlations) 

make interpretation easy. In a perceptual map the factor-loading matrix is 

represented visually as attribute vectors, where correlation between any attribute 

and a factor is equal to the cosine of the angle between that attribute vector and the 

corresponding factor. 

The factors may be rigidly rotated (i.e., F is transformed by an orthogonal 



 8

matrix, while at the same time making the corresponding transformation to Zs) to 

aid interpretation, forcing attributes to have either big or small cosines with the 

transformed factors (the transformation is called Varimax rotation). The result is 

that a set of attributes tends to line up closely with each factor. In this way, 

attributes tend to be closely aligned with a single factor. We can then better identify 

the attributes most closely associated with the transformed factors. Although 

rotation changes the variance explained by each factor, it does not affect the total 

variance explained by the set of retained factors. To further aid interpretation,  we 

can draw each attribute vector on the map with a length that is proportional to the 

variance of that attribute explained by the retained factors. Exhibit 5 is a 

perceptual map derived from factor analysis, where the length of each attribute 

vector indicates the proportion of the variance of that attribute recovered by the 

map. 

 

 

EXHIBIT 5 

An example of a three-dimensional attribute-based perceptual map of beverages, where the 

length of each attribute vector is proportional to the amount of its variance explained by the map. 

The three dimensions are (1) maturity of target segment, (2) refreshment value, and (3) 

nutritional value. Source: Aaker and Day 1990, p. 574.  
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Variance explained by a factor: Each factor explains a proportion of the total 

variance in the data as follows: 

Variance explained by factor 22
2

2
1 ... inii fffi +++=    (3) 

The proportion of the variance explained by a single factor equals the variance 

explained by that factor divided by n, the total variance in the data. In Exhibit 5 

the proportion of variance explained by the horizontal axis (factor 1) is equal to 

0.27, and the variance explained by the vertical axis (factor 2) is equal to 0.26, 

giving a combined variance explained by the two axes of 0.53. If all n factors are 

retained, these proportions will sum to one. 

Proportion of an attribute’s variance explained by the retained 

factors: A good factor analysis solution explains a significant proportion of the 

variance associated with each original attribute as follows: 

Proportion of variance explained for attribute 22
2

2
1 ... rjjj fffj +++=  (4) 

Number of factors retained: If the variance of any attribute is poorly 

recovered by the retained factors, that attribute is unique and would require 

additional factor(s) for it to be explained. In that case we might consider going to 

a higher-dimensional map, say, from a two- to a three-dimensional map. This 

raises the broader question of how many factors we should retain in a factor-

analysis study. Unfortunately, there is no simple answer to this question, 

although there are several useful guidelines. In the context of perceptual maps, it 

rarely makes sense to go beyond three dimensions, especially if a three-

dimensional map recovers more than 60 to 70 percent of the variance in the 

original data. One useful guideline is that every retained factor should 

individually account for at least one unit of variance (equivalent to the variance 

in a single attribute) and typically should account for substantially more than one 

unit of variance. 

Location of the products (alternatives) on a perceptual map: An 

important element of the factor analysis output is the factor score matrix, It gives 

the location of each product on each factor. If we retain only two factors, then the 

location of the first product in a two-dimensional perceptual map is given by the 

first two elements in the first row of the factor-score matrix; the location of the 

second product is given by the first two elements of the second row of the factor 
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score matrix, and so on. 

In summary, attribute-based methods provide a powerful set of tools for 

perceptual mapping. They are particularly useful when the product alternatives 

are differentiated along tangible attributes that are well understood and 

evaluated by customers.   

Description of Ideal-Point Based Preference Mapping  

We briefly describe a geometric model which is technically referred to as 

Multidimensional Unfolding.  The basic idea is to represent customers and 

products as points on a map so that products that are closer on the map to a 

customer point are preferred to a greater extent by that customer as compared to 

products that are farther away from that customer point.  In other words, the 

predicted preference of a product to a customer is inversely related to the 

distance between that consumer customer point and the product point on the 

map.  The locations of customers on the map are referred to as “Ideal Points” 

because a product located exactly at a customer point has zero distance from that 

customer’s location and, therefore, will be the product that is preferred by that 

customer over all other products.  In other words, a product located exactly 

where the customer is located on the map is the “ideal” product for that 

customer.  

Quasi-metric approach to preference mapping. Many methods have been 

proposed for generating preference maps with ideal points.  Here, we briefly 

describe the quasi-metric approach developed by Kim, DeSarbo and 

Rangaswamy (1999).  We restrict ourselves to the case where customer 

preference data for various products are obtained on a rating scale (say, a 100-

point scale) where higher numbers indicate greater preference for the product.  

Let: 

s Sij ∈ : preference rating of customer i for product j.  

x Xik i∈ : customer i's ideal point coordinate on dimension k of the map 

y Yjk j∈ : product j's coordinate on dimension k of the map 

d Dij ∈ : the Euclidean distance between customer (ideal point) i and 

product point j in a given K dimensional joint-space map (usually, 

K is at most equal to 3) 
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( )e E
i j j n, '

∈ : a set of variables representing the preference differentials for 

customer i between the nth  pair of products, when the stimuli are 

arranged in decreasing order of preference according to the 

resulting map.  That is, ( ) ijijnjji dde −= '', .  There are (J-1) 

ordered pairs among the J ordered stimuli for each subject i.  That 

is, n N∈ , where N is an index set from 1 to J-1. 

The distance between ideal point i and product j in a K-dimensional joint-space is 

defined by: 

 d X Y X Yij i j i j= − −[( )( )' ]1 2   ∀ ∈ ∀ ∈i I j J, . (5) 

Then, we approximate an unknown monotone relationship between stimuli j and j' 

for customer i in a K-dimensional Euclidean space where: 

 ,'' ijijijij ddss ≤⇒≤    ∀ ∈ ∀ ∈i I j j J, , ' .  (6) 

The restrictions in (6) ensure that the closer a product is positioned to an ideal 

point in the preference map, the more it will be preferred by that customer.  Thus, 

the preference differential between the nth  ordered pair of products j and j' for 

customer i, ei j j n( , ') , can be defined and represented as: 

e d di j j n ij ij( , ') ' ,= −    ∀ ∈ ∀ ∈i I j j J, , ' ,  (7) 

where product j is at least as preferred as products j' for customer i.  Without any 

loss of generality, we can replace (6) with the following condition: 

 ,0.0 '')',( ijijijijnjji ssdde ≤⇔≥−=  ∀ ∈ ∀ ∈i I j j J, , ' ,  (8) 

Monotonicity assures that more preferred products for any customer are at 

least as close to the ideal point of that customer as compared to a less preferred 

product.  This condition implies that all preference differentials for each 

customer i ( ))',( njjie should be non-negative. 

To determine the unknown locations of the ideal points and product points, 

the quasi-metric preference mapping procedure first transforms the raw data of 

preferences into an a priori matrix of desired distances between the ideal points 

and the product points that have to be satisfied by a preference map.  This matrix 

is denoted as Λ .  In general, the desired distances embedded in Λ  cannot be 

fully satisfied by preference maps in a low-dimension (say 2 or 3 dimensions).  
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Therefore the solution procedure attempts to satisfy the constraints in Λ  as 

closely as possible by using an alternating, two-stage process to find a map in 

which the distances between the points are as close to being proportional to Λ  as 

possible.  This procedure starts from an initial configuration (D) that results in a 

set of distances between all the points (both ideal points and product points).  

Some of the distances in D will be well correlated to the corresponding distances 

in Λ  while others will be poorly correlated.  In the first stage of the solution 

procedure, this discrepancy information is used to construct a new set of “target 

distances” denoted as 
~Di , which departs optimally from Λ  (in the sense of least 

squares).  In the second stage, this set of target distances is used to generate a new 

configuration of points that minimizes a normalized loss function which increases 

as the distances in the generated configuration depart from being equal to the 

corresponding distances in 
~Di .  The procedure alternates between the two stages 

until no further significant reduction in the loss function is achieved between the 

two stages.  Further details about this procedure are available in Kim, DeSarbo 

and Rangaswamy (1999). 

To determine the appropriate number of dimensions for the preference 

map, we trade off between monotonicity and the number of dimensions. The 

general idea is to start with one dimension, and increase the number of 

dimensions until the loss function decreases very little with the addition of each 

incremental dimension. 

Interpreting ideal point preference maps: The interpretation of a 

preference map is usually straightforward. As output, the software produces 

points representing products and customers.  Any natural groupings of ideal 

points on the map denote potential customer sub-segments.  For example, in 

Exhibit 6, the circles represent segments, and the size of a circle represents 

segment size.  These customers prefer Budweiser the most (i.e., their ideal points are 

located closest to Budweiser), Miller the next most, and so forth. The next largest 

segment is marked as a circle with the number 2. This segment prefers Coors Light and 

Michelob most. The model also shows that Stroh’s is not the most preferred brand in 

any segment—it is a “compromise brand” that some respondents may choose (e.g., 

those in segments 5 and 3) when their most preferred brand is unavailable. 

To fully understand and use a preference map, we also need to interpret the 

axes, which may sometimes be difficult. One simple way to interpret the axes is to 

look for alternatives at extreme locations on each dimension and then try to 
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determine the differentiating features between these alternatives. We can also 

shift the origin or rotate the axes to improve interpretation. Usually, however, we 

will need additional data from the study participants regarding their perceptions 

of the alternatives to help us interpret the map.  To incorporate such data in 

preference maps, we need to generate “joint-space”: maps described next. 

 

 

 

EXHIBIT 6 

A joint-space map derived from external analysis with groupings of customer ideal points in circles. The size 

of the circle indicates relative size of the customer segment at that location. Source:  Adapted from Moore 

and Pessemier 1993, p. 146.  

Description of Joint Space Mapping 

A major limitation of perceptual maps is that they do not indicate which 

areas (positions) of the map are desirable to the target segments of customers 

and which ones are not. In other words, the maps do not incorporate information 

about customer preferences or choices.  A major limitation of preference maps is 

that they do not tell us what product attributes should be changed to make a 
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product more attractive to the target customers. We need to use joint-space 

mapping methods to incorporate both perceptions and preferences in the same 

map. 

Perceptions are fundamentally different from preferences: customers may 

see Volvo as the safest car, but they may also have a low preference for it. In 

addition, unlike perceptions preferences do not necessarily increase or decrease 

monotonically with increases in the magnitude of an attribute. In some cases 

(e.g., sweetness of soft drink) each customer has an ideal level of the attribute 

above or below which a product becomes less preferred. In other cases 

customers always prefer more of the attribute (e.g., quality of a TV set) or 

always prefer less of an attribute (e.g., waiting time before a car is repaired). 

Exhibit 7 illustrates these different types of preferences. Preference maps that 

incorporate inverted U-shaped preferences are referred to as ideal-point (or 

unfolding) models. Maps that incorporate linear preference functions are 

referred to as vector models. (In a third kind of preference modeling, we can 

use part-worths to represent arbitrary piecewise linear functions that can 

approximate both ideal-point and vector preference functions.  A method called 

Conjoint Analysis is useful for this purpose.  

 

 

 

EXHIBIT 7 

Different types of preference functions. Ideal-point models have an intermediate “best level,” e.g., 

sweetness, whereas for vector models more (or less) is always more (less) preferred, e.g., waiting 

time, reliability.  

 



 15

 

 

EXHIBIT 8 

Interpreting simple joint-space maps. In ideal-point maps distances directly indicate preference: 

the larger the distance from the ideal point, the less preferred the brand. In vector maps the 

product locations are projected onto a preference vector (dashed lines in b), and distances are 

measured along the preference vector.  

Simple joint-space maps: The simplest way to incorporate preferences in a 

map is to introduce a hypothetical ideal brand into the set of alternatives that 

customers evaluate in the attribute-based perceptual mapping model. For each 

respondent, an ideal brand has that individual’s most preferred combination of 

attributes. Assuming that both the perceptions and the preferences of customers 

in a target segment are fairly homogeneous, we  can find the location of the 

“average” ideal brand using either similarity-based or attribute-based methods. 

The ideal brand thus becomes simply another alternative that customers 

evaluate. In the resulting map, locations that are farther away from the ideal 

point (location of the ideal brand) are less desirable to customers than locations 

closer to the ideal point. Using this approach in Exhibit 8(a), we  can regard 

alternative A, which is twice as far from the ideal point as alternative B, as being 

preferred half as much as B. 

Another way to include preferences in attribute-based models is to add an 

attribute called “preference” on which customers rate all the alternatives to 

indicate their preferences for these alternatives. When we aggregate and 

average these preference ratings, we can treat the average ratings as an 

additional row in the input data matrix to represent an attribute called 

“preference.”  Alternatively, if we have the current market shares for the various 
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products being mapped, we could use those market shares as surrogate 

indicators of preferences for those products. The map we generate from this 

modified data set then includes a preference vector to indicate the direction of 

increasing preference. An alternative positioned farther along this vector is one 

for which customers have greater preference. Suppose that alternative A is 

farthest along the preference vector. Then if B is half as far from A as C is from 

A along the preference vector, customers prefer B twice as much as C (Exhibit 

8b). 

Exhibit 9 shows a simple joint space map of notebook computers derived by 

using the above approach. The preference vector shows that customer 

preference increases with improvements in screen quality and perceived value 

of the product and decreases with lower levels of battery life. In this example 

the two-dimensional map recovered over 80 percent of the variance in the 

preference “attribute.” However, if it had recovered a low percentage, say less 

than 50 percent, then it would be unwise to use the map to interpret preference 

structure, even though the map could still be useful for interpreting the 

perceptual dimensions. When variance recovery for the preference vector is 

poor, it may be worthwhile to drop some attributes from the analysis to see if 

you can produce a joint-space map that is easier to interpret. 
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EXHIBIT 9 

In this example of a simple attribute-based joint-space map with a preference vector, the 

direction of increasing preference is indicated by the attribute “preference.” Overall preference for 

notebook computers increases with screen quality, value, and long battery life but is unaffected by 

expandability, keyboard, and ease of use.  

Joint space mapping using external analysis: An external analysis 

mapping procedure first creates a map of all the products using attribute-based 

perceptual mapping.  The mapping model is based on the assumption that 

respondents who have common perceptions of a set of alternatives may have 

widely differing preferences for these alternatives.  Ideally, the underlying 

perceptual map should be derived from the same set of respondents from whom 

preference data is obtained, but this is not crucial.  

The “external” perceptual map serves to fix the relative positions of the 

different competing products.  Customer preferences are then superimposed onto 

the perceptual map so that each customer's stated preference ratings are 

recovered as closely as possible in the resulting joint-space map.  This can be 

done in one of two ways.  (1) In the ideal point version, customer locations are 
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superimposed on the perceptual map in a manner that best captures the relative 

preferences a customer has for each product, i.e., the ideal point location for a 

customer is chosen so that the distances of that ideal point from each of the 

product points recovers as closely as possible the relative preferences of that 

customer for those products.  (2) In the preference vector version, each 

customer’s direction of increasing preference is chosen so that it recovers that 

customer’s preference orderings of the products as closely as possible.  In what 

follows, we briefly elaborate on both these approaches. 

Joint-space mapping with ideal points:  Here the quasi-metric unfolding 

model of Kim, DeSarbo and Rangaswamy (1999) is modified so that every 

configuration considered by the solution procedure fixes the relative locations 

of all the product points (yik) to be identical to those determined by the external 

perceptual map.  The solution approach is identical to what we had outlined 

earlier for the preference map version of the quasi-metric model.  

Joint-space mapping with preference vectors: Here, we introduce for 

each respondent a preference vector into the map in a manner that ensures 

maximal correspondence between the input preference ratings (or rankings) for 

the alternatives and the preference relationships among the alternatives in the 

resulting joint-space map.  Each customer included in the study has a unique 

preference vector. 

Let sij denote the value of the preference rating of the jth alternative by the ith 

customer.  The solution procedure attempts to find a preference vector (i.e., the 

direction in which preference increases) for each customer by using the 

following equation to compute estimated ratings: 

 

,ˆ
1

i

r

k
jkikiij byxas += ∑

=

      (9) 

where 

ai = slope of the preference vector; 

bi = intercept term for preference vector; 

yjk = coordinate location of alternative j on dimension k, determined from a 
perceptual map; 

xik = preference vector coordinate on dimension k; and 

r = number of dimensions in the perceptual map. 
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Given r and yjk (for all j and k), the model attempts to find ai, bi, and xik such 

that ˆsij is as close as possible (in the sense of minimizing squared distance) to 

the ratings sij. (To draw the map, we can relocate the computed preference 

vectors by shifting them in a parallel manner so that they pass through the 

origin.) The product term, xik yjk, in Eq. (9) ensures that the preference vector 

direction on the map will maximally recover the preference ratings sij for 

respondent i for all j, for the given positions of the product alternatives (yjk, j=1, 

2, ... , J and k=1, ... , r).  Further details about the PREFMAP3 model for 

implementing this procedure are provided in Carroll (1972), and Green and 

Wind (1973), and Meulman, Heiser, and Carroll (1986).  

Exhibit 10 shows a map derived using the preference vector developed by 

PREFMAP-3, which is equivalent to the "Ideal Point" map shown in Exhibit 6. 

To interpret the preference vectors, follow the guidelines we gave for 

interpreting attributes in perceptual maps. 
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EXHIBIT 10 

A joint-space map derived from external analysis displaying the preference vectors of 25 respondents. 

This map is equivalent to the map shown in Exhibit 6, which was based on the ideal-point version of 

external analysis. The lines are denser in the upper right quadrant, suggesting that more respondents 

prefer the brands in that quadrant. The length of a preference vector indicates the degree to which the 

map was able to capture the preferences of that respondent.  

Transforming Preferences into Choice Shares or Market Shares 

Preference data embedded either in either the standalone preference maps 

or in joint-space maps may also be used to compute an index of predicted 

choice shares (or, equivalently, market shares if customer's budget constraint Is 

unlikely to be a major factor in the context under study) for any of the 

products included in the study at any location on the map. Such 

predictions are useful for exploring strategic options to re-position a focal 

product or brand. We can consider two “choice rules” for computing choice 

shares: (1) first choice and (2) share of preference. Under the first choice rule, 
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we assume that each customer only purchases the most preferred product (that 

is, the one closest to the ideal point or the one farthest along a preference 

vector). Under the share of preference rule, we assume that each customer 

purchases every product in some proportion to its measured preference value 

(relative to the sum of the preference values for all other products included in the 

model). The first choice rule is appropriate for infrequently purchased products 

(e.g., cars), whereas the share of preference rule is appropriate for frequently 

purchased products (e.g., shampoo or soft drinks). The software can 

automatically do these computations and enable us to explore the potential 

market performance that can be achieved by repositioning any one product 

assuming that all other products remain at their original locations on the map. 

To compute choice share at any location on the map, we have two choice 

rules we could use: (1) First choice (also called maximum utility) rule, and (2) 

Share of preference rule.  In what follows, we describe the methods we could use 

to compute these shares.  It is best to interpret the computed choice shares as 

indicating relative attractiveness of the selected location on the map for the 

selected product (relative to choice share computed at other locations, such as the 

current position of a brand on the map), rather than as an indicator of the actual 

choice share that will be realized in the marketplace. 

Choice shares computed from ideal-point model: First, we create a 

matrix containing the pairwise distances between an ideal point (location of 

person) and the location of the products.  As an example, consider the following 

points on a preference map (or a joint-space map) with two customers (c1 & c2) 

and two products (p1 and p2) along three dimensions: 

 

         dim1    dim2    dim3 

c1 1 2 3 

c2 2 1 2 

 

p1 1 3 3 

p2 0 1 0 

 

Then the distance matrix is computed as follows: 

Distance between c1 and p1 = 222 )33()32()11( −+−+− = 1.0 
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Distance between c1 and p2 = ( ) ( ) ( )1 0 2 1 3 02 2 2− + − + − =3.32 

The distance matrix is then given by: 

 

 p1  p2 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

c1 1.0  3.32 

c2 2.0  2.83 

To compute choice share under the first-choice rule, we first determine 

the number of customers for whom product 1 is the closest (has the smallest 

distance) and the number of customers for whom product 2 is closest.  Market 

share for the product j is then equal to: 

 

customersofnumber Total
points ideal their closest to located is jproduct   thefor whom customers ofNumber 

 

In our two-product example, product 1 is closest to both customers ideal 

points (as compared to product 2) and, therefore, its market share will be 100% 

(assuming the market consists of 2 customers), and market share for product 2 

will be 0.  

To compute choice share under the share of preference rule, we first compute 

a preference scale value for each customer for each product as the inverse of the 

distance of a product from the ideal point.  Then choice share for product j for 

any customer i given by:  

 

icustomer for  products all across distances inverse of Sum
icustomer for   jproduct for  1/X) (i.e., distance of Inverse

=ijShare  

 

Then the choice share for product j considering the entire market is 

computed by adding the share of product j for each of customer in the study, 

divided by the total number of customers: 

study in the customers ofnumber  Total

Share
i

ij∑
 

For the above example, share for product 1 will be: 
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=
+

=
+

+
+

=
2

586.0768.0
2

83.2
1

2
1

2
1

32.3
11

1

0.677 

Likewise, choice share can be computed for 2. 

Choice shares computed from preference vector model: For each 

customer, first project each product on to that customer’s preference vector.  We 

also normalize each customer’s preference vector to be of unit magnitude:   

 

    dim2  dim2  dim 3 

c1 0.267  0.535  0.802 

c2 0.667  0.333  0.667 

 

p1 1  3  3 

p2 0  1  0 

 

Then the projection of each product onto the customer’s preference vector is 

given by: 

 

Projection of p1 on c1 = 1*0.267+3*0.535+3*0.802 = 4.278 

Projection of p2 on c2 = 0*0.267+1*0.535+0*0.802 = 0.535 

 

Likewise,  

Projection of p1 on c2 = 3.667 

Projection of p2 on c2 = 0.667 

To compute choice share under the first-choice rule, we first determine the 

number of customers for whom product j has the highest projected preference 

score.  Market share for the product j is then equal to: 

 

customers ofnumber  Total
score preference projectedhighest   thehas jproduct  for whom customers ofNumber 

 

For this example, product 1 has the highest preference score for each 

customer (4.278 versus 0.535 for customer 1, and 3.667 versus 0.667 for 
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customer 2).  Product 1’s market share will be 100% (assuming the market 

consists of 2 customers), and market share for product 2 will be 0.  

Let PPij be the projected preference score of product j for customer i. Under 

the share of preference rule, choice share for product j for any customer i can be 

computed as:  

∑
=

j

PP

PP

ij

ij

e
e

ijShare  

The exponentiation of the projected preference score ensures that the 

computed market share of every product lies between 0 and 1 and the share 

formula given above ensures that the sum of choice shares across products will 

equal 1 for each customer. Then the choice share for product j considering the 

entire market is computed by adding the share of product j for each customer in 

the study, divided by the total number of customers: 

study in the customers ofnumber  Total

Share
i

ij∑
 

For our example, share for product 1 will be: 

965.0
2

953.0977.0
2

667.0667.3

667.3

535.0278.4

278.4

=
+

=+
+

+= ee
e

ee
e

 

Note: In our examples, the preferences of the two customers, c1 and c2, as 

represented by the ideal points and preference vectors are not directly 

comparable, which is why the market shares as computed by the share of 

preference model for the ideal point version and the preference vector version are 

different.  

Incorporating Price in Perceptual Maps 

W can represent price in several ways in perceptual maps as described 

in chapter 4 of Lilien, Rangaswamy and De Bruyn (2007).  In attribute-based 

perceptual maps, we  can include price as another attribute along which 

customers evaluate all the products.  Or we can include objective prices (the 

actual prices of the products) as an additional attribute in developing the map.  

Another way to approach this issue is to divide the coordinates of each 
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alternative by its price along each of the dimensions of the map. 

Summary 

 Mapping techniques enable managers to understand the competitive 

structure of their markets. Based on this understanding, they can then position 

their offerings to gain a favorable response from their target segments. 

Although these techniques are powerful, it is important to understand their 

limitations so that they we can apply them where they are most useful.  The 

insights provided by perceptual maps are limited by the particular set of 

alternatives and attributes included in the study—that is, they support 

positioning efforts within an existing framework.  The insights provided by 

preference maps and joint-space maps (e.g., predicted market shares associated 

with a re-positioning option) are relevant only for the target segments 

participating in the study. We should also remember that the mapping 

techniques only serve to represent perceptions and preferences in a manner that 

aids decision making. They do not tell us much about why customers form 

certain perceptions or preferences. 
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